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Abstract 

To overcome the disadvantages of a small starting set 
in MULTAN a technique is described whereby a large 
number of phases are given random values with low 
weights and then refined by a weighted tangent 
formula. The effectiveness of the process depends quite 
critically on assigning suitable weights to phase 
estimates and on a fairly tight control of the refine- 
ment. Examples of the application of the method are 
given for a number of structures, many of which are 
difficult to solve by direct methods. 

Introduction 

Multisolution direct methods, e.g. MULTAN and 
SHELX, are very successful in the automatic solution 
of crystal structures. These methods are in a state of 
steady development and MULTAN-80 (Main, Fiske, 
Hull, Lessinger, Germain, Declercq & Woolfson, 
1980), the latest available version, not only includes a 
number of new features but contains very sophisti- 
cated decision-making routines (Main, 1978), so that it 
is normally run on default values for the various 
program parameters. 

An important reason for the occasional failure of 
multisolution methods is the small size of the starting 
set. The latest versions of MULTAN and SHELX use 
the magic-integer concept to extend the size of the 
starting set but even so, in the early stages of the 
phase-development process, the validity of com- 
paratively few triple-phase relationships control the 
success, or otherwise, of the whole exercise. It was to 
overcome this difficulty that the programs MAGIC and 
YZARC (Declercq, Germain & Woolfson, 1979) were 
developed. In these one treats simultaneously from 40 
to 100 reflexions and the hundreds of relationships 
which link them, so there is less dependence on the 
validity of a few particular relationships. 

The YZARC method (Baggio, Woolfson, Declercq 
& Germain, 1978) involves the assignment of random 
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phase values to about 100 reflexions and the refine- 
ment of these values by the least-squares solution of a 
set of linear equations derived from the phase relation- 
ships. The proposal here is similar except in two 
important respects. Firstly, it is possible simul- 
taneously to work with all the reflexions whose phases 
are needed and all the relationships which link them 
from the very beginning. Thus one may assign random 
phases to, say, 300 reflexions although, initially, these 
have low weights associated with them. Secondly, the 
refinement process is carried out either by the weighted 
tangent formula (WTF) (Main, Hull, Lessinger, Ger- 
main, Declercq & Woolfson, 1978), or by the statis- 
tically-weighted tangent formula (SWTF) (Hull & 
Irwin, 1978), both of which are available from 
MUL TAN-80. 

The weighting and refinement schemes 

In the present method, called RANTAN, weights are 
allocated to the initial phase allocations as follows: 
origin-fixing reflexion, weight= 1.00; enantiomorph- 
fixing reflexion with special value, weight = 0.99; 
enantiomorph-fixing reflexion with general value, 
weight = 0.85; random phase, weight -- 0.25. Any 
other 'known' phase, for example a ~l-determined 
phase, is included with weight 2P - 1, where P is the 
probability of the indicated special value. This is the 
same as the weight used in MUL TAN-80. 

This system of weights, and especially the weight for 
a random phase, has been determined empirically; the 
method is usually not particularly sensitive to the 
weights used as long as they have approximately the 
values suggested here. However, later we shall describe 
an application where a different weight assignment was 
essential for success. 

In the RANTAN method the initial random phase 
and its weight of 0.25 are not changed until a phase 
estimate is obtained with a new weight greater than 
0.25. Then, and only then, is the phase allowed to vary 
and to follow its refinement path. 

Experience has shown that sometimes one or other 
of the two tangent-formula procedures, WTF and 
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SWTF, is effective and the other is not. Where there is 
an enantiomorph-defining problem then the SWTF is to 
be preferred. Normally WTF is used, because it is 
somewhat faster, but if it is not successful then another 
run is made with the SWTF. 

Once the refinement is complete then the usual 
M U L T A N  figures of metit are computed and another 
trial set of random phases may then be allocated and 
refined in the same way. For all the structures so far 
examined a hundred trial sets of phases or less have 
been developed. 

Some applications to trial structures 

In Table 1 are shown some of the results of applying 
R A N T A N  to solve crystal structures. These twelve 
examples have been selected to illustrate the range of 
space groups to which R A N T A N  has been successfully 
applied. Their names are given in coded form but they 
represent a wide variety of space groups, structural 
complexity and difficulty as far as direct methods are 
concerned. Every one of these structures was solved by 
R A N T A N ,  with all or most of the structure shown in 
the first E map. Some comments about some of these 
structures are now given. 

M U N I C H - l :  dibenzo[i,l]pentacyclo[6.2.2.02'6.02'7. - 
03,7]dodeca-9,11-diene (Szeimies-Seebach, Harnisch, 
Szeimies, Van Meerssche, Germain & Declercq, 1978). 

This structure, with 40 atoms in the asymmetric unit 
and space group C2, can only be solved by M U L T A N  
with great difficulty. The best set from R A N T A N ,  
which shows 38 of the atoms, has figures of merit: 
ABSFOM 1.0093; PSIZERO 1.262; RESID 19.93; 
C F O M  2.8503. 

RR: 3,3-dimethyl-4,5,9,10,11,12-hexa(carboxymethyl)- 
tetracyclo(7.2.1.02'4.02'8)dodeca-5,7,10-triene (Declercq, 
Germain & Henke, 1973). 

The C O N V E R G E N C E  program in M U L T A N  chose 
three reflexions, 981, 10,5,3 and 133, for fixing the 
origin and enantiomorph. The general reflection 133 
must be allocated two values of phase, 45 and 315 o, 
according to the M U L T A N  origin-fixing scheme, and 
this was done in R A N T A N .  Thus pairs of trials (1, 2), 
(3, 4), etc. began with the same phases, including 
random phases, but with changes in the phase value of 
133. For each of the pair of trials (21, 22) R A N T A N  
gets the same solution, in other words, the refinement of 
the phases sometimes depends on the pattern of 
random phases rather than the fixing of one phase. 

APAPA: adenylyl- (3',5')-adenylyl-(3',5')-adenosine 
hexahydrate (Suck, Manor & Saenger, 1976). 

This again is a structure which cannot be solved by a 
straightforward application of M U L T A N .  R A N T A N  
clearly showed in an E map the two fragments 
containing two phosphorus atoms and 39 other atoms. 
All the other non-hydrogen atoms were found by a 
weighted Fourier synthesis. 

AZET: 3-chloro- 1,3,4-triphenyl-2-azetidinone 
(Colens, Declercq, Germain, Putzeys & Van 
Meerssche, 1974). 

This is a difficult structure to solve because of the 
enantiomorph problem, where a false centre of sym- 
metry is found in the E maps, which makes their 
interpretation almost impossible. The first application 
of R A N T A N  with the SWTF did not solve the 
structure. It was decided to increase the weight for a 
random phase to 0.45. The rationale for this is that, 
clearly, the fixing of a few phases at explicit values was 
not fixing the enantiomorph too well but if, by chance, 
the pattern of random phases favoured one enantio- 

Table 1. Some o f  the crystal structures solved by R A N T A N  

Z number of molecules in the unit cell; NOA number of atoms in the asymmetric unit; NOT number of trials; NSS number of correct 
solutions; NAE number of atoms from the first E map; NOR number of reference. 

Name Formula Space group Z NOA NOT NSS NAE NOR 

SEVIL CIoHIaNOa P1 2 14 64 1 14 (1) 
TUR-10 C15H240 2 P6322 12 17 64 1 17 (2) 
PYRBEN C22H1402 P41 4 24 64 1 24 (3) 
INOS C6H1206. H20 P2t/n 8 26 64 3 26 (4) 
MUNICH-4 C27H220 C¢ 4 28 100 1 23 (5) 
TUR-11 C15H2404 P21 4 38 32 1 37 (6) 
RR C26H2sO12 Pn21a 4 38 64 6 36 (7) 
MUNICH- 1 C20Hl6 C2 8 40 100 1 38 (8) 
AZET C21HI6CINO Pca21 8 48 100 1 30 (9) 
ERGO C2sH440 P212121 8 58 48 1 45 (10) 
APAPA C30H35NIsOIsP2 . 6H20 P41212 8 69 64 1 41 (11) 
SCHWZ2 C46H70027 PI 1 73 100 1 50 (12) 

References: (1) Conde, Lopez Castro, Marquez, Declercq & Germain (1979); (2) unpublished; (3) Bernstein et al. (1975); (4) unpublished; 
(5) Szeimies-Seebach, Szeimies, Van Meerssche, Germain & Declercq (1979); (6) Brackman et al. (1981); (7) Declercq et aL (1973); (8) 
Szeimies-Seebach et al. (1978); (9) Colens et al. (1974); (10) Hull, Leban, Main, White & Woolfson (1976); (11) Suck et al. (1976); (12) 
Sehweizer (1980). 
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morph then one could encourage the development of 
this solution by increasing the weights of the random 
phases. Experiments have shown that the optimum 
value of weight for the initial random phases varies 
from structure to structure. The value 0.25 seems to 
work for most structures but the device of varying this 
value is available if R A N T A N  is unsuccessful. 

Of the other structures in Table 1, other than those 
described above, ERGO and SCHWZ2 are particu- 
larly difficult to solve by previous direct methods. 

General comments 

R A N T A N  shares characteristics with both the YZARC 
and M U L T A N  procedures but, on balance, it has some 
advantages over both these other methods. Although its 
performance varies from structure to structure it seems 
to be at least as powerful as M U L T A N  and is probably 
more powerful. The disadvantage it possesses, com- 
pared with MULTAN,  is that it takes somewhat more 
computing time (see Table 2). If the early-figure- 
of-merit (EFOM) idea is used, as in MULTAN-80,  so 
that unlikely sets of phases can be weeded out before 
they are fully refined, then a great saving of time can be 
made. By applying EFOM after the sixth cycle of 
refinement the time per trial for ERGO was reduced 
from 15.140 to 8.376 s. 

No direct comparison with YZARC has been made 
as far as power is concerned although, since they share 
the large starting-set characteristic, they are probably 
similarly effective. However, here, R A N T A N  has a 
considerable advaritage in terms of computer time, 
being more than ten times faster if systems of similar 
size are being processed. That comparison must be 
qualified by the fact that YZARC is usually employed 
with a smaller system and also that the original 
YZARC least-squares refinement process is being 
replaced by a gradient refinement method which is 
three times faster. 

R A N T A N  can be implemented by simple modifi- 
cations of the MULTAN-80 system and a distributable 
version of it is being prepared. It is also hoped, in due 

Table 2. A comparison of  computer time of  MUL TAN, 
R A N T A N  and YZAR C 

N is the number of phases; M is the number of relationships; T is 
the number of trials. 

MULTAN RANTAN YZARC 

ERGO* N,M,T 332,6141, 112 332,6141, 112 66,382,50 
Time per trial (s) 13.140 15.140 7 

AZET'I" N, M, T 200, 3132, 40 200, 3132, 40 200, 3201, 27 
Time per trial (s) 4.635 8.3157 100 

* Using the WTF in MULTAN and RANTAN. 
t Using the SWTF in MULTAN and RANTAN. 

course, to have available a version which can be 
deployed in a minicomputer. 
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